PREFACE |
|
xvii | |
Part I Introduction |
|
1 | (54) |
|
|
1 | (30) |
|
1.1 Examples of Complexity |
|
|
2 | (6) |
|
1.1.1 The Analytically Tractable System |
|
|
3 | (2) |
|
1.1.2 The Analytically Tedious System |
|
|
5 | (2) |
|
1.1.3 The Analytically Intractable System |
|
|
7 | (1) |
|
1.2 Multidisciplinary Aspects of Simulation |
|
|
8 | (3) |
|
|
11 | (3) |
|
1.4 Deterministic and Stochastic Simulations |
|
|
14 | (5) |
|
1.4.1 An Example of a Deterministic Simulation |
|
|
16 | (1) |
|
1.4.2 An Example of a Stochastic Simulation |
|
|
17 | (2) |
|
1.5 The Role of Simulation |
|
|
19 | (4) |
|
1.5.1 Link Budget and System-Level Specification Process |
|
|
20 | (2) |
|
1.5.2 Implementation and Testing of Key Components |
|
|
22 | (1) |
|
1.5.3 Completion of the Hardware Prototype and Validation of the Simulation Model |
|
|
22 | (1) |
|
1.5.4 End-of-Life Predictions |
|
|
22 | (1) |
|
1.6 Software Packages for Simulation |
|
|
23 | (3) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (3) |
|
|
31 | (24) |
|
|
32 | (2) |
|
2.2 Aspects of Methodology |
|
|
34 | (15) |
|
2.2.1 Mapping a Problem into a Simulation Model |
|
|
34 | (7) |
|
2.2.2 Modeling of Individual Blocks |
|
|
41 | (6) |
|
2.2.3 Random Process Modeling and simulation |
|
|
47 | (2) |
|
2.3 Performance Estimation |
|
|
49 | (3) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (3) |
Part II Fundamental Concepts and Techniques |
|
55 | (392) |
|
3 SAMPLING AND QUANTIZING |
|
|
55 | (40) |
|
|
56 | (9) |
|
3.1.1 The Lowpass Sampling Theorem |
|
|
56 | (5) |
|
3.1.2 Sampling Lowpass Random Signals |
|
|
61 | (1) |
|
|
61 | (4) |
|
|
65 | (6) |
|
3.3 Reconstruction and Interpolation |
|
|
71 | (7) |
|
3.3.1 Ideal Reconstruction |
|
|
71 | (1) |
|
3.3.2 Upsampling and Downsampling |
|
|
72 | (6) |
|
3.4 The Simulation Sampling Frequency |
|
|
78 | (9) |
|
3.4.1 General Development |
|
|
79 | (2) |
|
3.4.2 Independent Data Symbols |
|
|
81 | (2) |
|
3.4.3 Simulation Sampling Frequency |
|
|
83 | (4) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (5) |
|
4 LOWPASS SIMULATION MODELS FOR BANDPASS SIGNALS AND SYSTEMS |
|
|
95 | (48) |
|
4.1 The Lowpass Complex Envelope for Bandpass Signals |
|
|
95 | (23) |
|
4.1.1 The Complex Envelope: The Time-Domain View |
|
|
96 | (12) |
|
4.1.2 The Complex Envelope: The Frequency-Domain View |
|
|
108 | (2) |
|
4.1.3 Derivation of Xd (f) and X9 (f) from X (f) |
|
|
110 | (1) |
|
|
111 | (1) |
|
4.1.5 Quadrature Models for Random Bandpass signals |
|
|
112 | (3) |
|
4.1.6 Signal-to-Noise Ratios |
|
|
115 | (3) |
|
4.2 Linear Bandpass systems |
|
|
118 | (7) |
|
4.2.1 Linear Time-Invariant Systems |
|
|
118 | (4) |
|
4.2.2 Derivation of hd(t) and hq(t) from H(f) |
|
|
122 | (3) |
|
|
125 | (3) |
|
4.4 Nonlinear and Time-Varying Systems |
|
|
128 | (4) |
|
|
128 | (2) |
|
4.4.2 Time-Varying Systems |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (5) |
|
4.9 Appendix A: MATLAB Program QAMDEMO |
|
|
139 | (2) |
|
4.9.1 Main Program: c4_gamdemo.m |
|
|
139 | (1) |
|
4.9.2 Supporting Routines |
|
|
140 | (1) |
|
4.10 Appendix B: Proof of Input-Output Relationship |
|
|
141 | (2) |
|
5 FILTER MODELS AND SIMULATION TECHNIQUES |
|
|
143 | (58) |
|
|
144 | (2) |
|
|
146 | (2) |
|
|
146 | (1) |
|
|
147 | (1) |
|
5.2.3 Synthesis and Simulation |
|
|
147 | (1) |
|
5.3 IIR and FIR Filter Implementations |
|
|
148 | (7) |
|
5.3.1 Direct Form II and Transposed Direct Form II Implementations |
|
|
148 | (6) |
|
5.3.2 FIR Filter Implementation |
|
|
154 | (1) |
|
5.4 IIR Filters: Synthesis Techniques and Filter Characteristics |
|
|
155 | (12) |
|
5.4.1 Impulse-Invariant Filters |
|
|
155 | (1) |
|
5.4.2 Step-Invariant Filters |
|
|
156 | (1) |
|
5.4.3 Bilinear z-Transform Filters |
|
|
157 | (8) |
|
5.4.4 Computer-Aided Design of IIR Digital Filters |
|
|
165 | (2) |
|
5.4.5 Error Sources in IIR Filters |
|
|
167 | (1) |
|
5.5 FIR Filters: Synthesis Techniques and Filter Characteristics |
|
|
167 | (19) |
|
5.5.1 Design from the Amplitude Response |
|
|
170 | (7) |
|
5.5.2 Design from the Impulse Response |
|
|
177 | (3) |
|
5.5.3 Implementation of FIR Filter Simulation Models |
|
|
180 | (4) |
|
5.5.4 Computer-Aided Design of FIR Digital Filters |
|
|
184 | (2) |
|
5.5.5 Comments on FIR Design |
|
|
186 | (1) |
|
|
186 | (3) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (2) |
|
5.10 Appendix A: Raised Cosine Pulse Example |
|
|
192 | (1) |
|
5.10.1 Main program c5_rcosdemo.m |
|
|
192 | (1) |
|
5.10.2 Function file c5_rcos.m |
|
|
192 | (1) |
|
5.11 Appendix B: Square Root Raised Cosine Pulse Example |
|
|
193 | (1) |
|
5.11.1 Main Program c5_sgrcdemo.m |
|
|
193 | (1) |
|
5.11.2 Function file c5_sgrc.m |
|
|
193 | (1) |
|
5.12 Appendix C: MATLAB Code and Data for Example 5.11 |
|
|
194 | (7) |
|
5.12.1 c5_FIRFilterExample.m |
|
|
195 | (1) |
|
5.12.2 FIR_Filter_AMP_Delay.m |
|
|
196 | (2) |
|
|
198 | (1) |
|
|
198 | (3) |
|
6 CASE STUDY: PHASE-LOCKED LOOPS AND DIFFERENTIAL EQUATION METHODS |
|
|
201 | (42) |
|
6.1 Basic Phase-Locked Loop Concepts |
|
|
202 | (8) |
|
|
204 | (2) |
|
6.1.2 The Nonlinear Phase Model |
|
|
206 | (2) |
|
6.1.3 Nonlinear Model with Complex Input |
|
|
208 | (1) |
|
6.1.4 The Linear Model and the Loop Transfer Function |
|
|
208 | (2) |
|
6.2 First-Order and Second-Order Loops |
|
|
210 | (5) |
|
6.2.1 The First-Order PLL |
|
|
210 | (4) |
|
6.2.2 The Second-Order PLL |
|
|
214 | (1) |
|
6.3 Case Study: Simulating the PLL |
|
|
215 | (8) |
|
6.3.1 The Simulation Architecture |
|
|
215 | (1) |
|
|
216 | (3) |
|
|
219 | (1) |
|
6.3.4 Error Sources in the Simulation |
|
|
220 | (3) |
|
6.4 Solving Differential Equations Using simulation |
|
|
223 | (7) |
|
6.4.1 Simulation Diagrams |
|
|
224 | (1) |
|
|
225 | (5) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
232 | (4) |
|
6.9 Appendix A: PLL Simulation Program |
|
|
236 | (1) |
|
6.10 Appendix B: Preprocessor for PLL Example Simulation |
|
|
237 | (1) |
|
6.11 Appendix C: PLL Postprocessor |
|
|
238 | (3) |
|
|
238 | (1) |
|
|
239 | (2) |
|
6.12 Appendix D: MATLAB Code for Example 6.3 |
|
|
241 | (2) |
|
7 GENERATING AND PROCESSING RANDOM SIGNALS |
|
|
243 | (60) |
|
7.1 Stationary and Ergodic Processes |
|
|
244 | (4) |
|
7.2 Uniform Random Number Generators |
|
|
248 | (10) |
|
|
248 | (4) |
|
7.2.2 Testing Random Number Generators |
|
|
252 | (4) |
|
|
256 | (1) |
|
7.2.4 MATLAB Implementation |
|
|
257 | (1) |
|
7.2.5 Seed Numbers and Vectors |
|
|
258 | (1) |
|
7.3 Mapping Uniform RVs to an Arbitrary pdf |
|
|
258 | (11) |
|
7.3.1 The Inverse Transform Method |
|
|
259 | (5) |
|
7.3.2 The Histogram Method |
|
|
264 | (2) |
|
|
266 | (3) |
|
7.4 Generating Uncorrelated Gaussian Random Numbers |
|
|
269 | (8) |
|
7.4.1 The Sum of Uniforms Method |
|
|
270 | (3) |
|
7.4.2 Mapping a Rayleigh RV to a Gaussian RV |
|
|
273 | (2) |
|
|
275 | (1) |
|
7.4.4 MATLAB Implementation |
|
|
276 | (1) |
|
7.5 Generating Correlated Gaussian Random Numbers |
|
|
277 | (5) |
|
7.5.1 Establishing a Given Correlation Coefficient |
|
|
277 | (1) |
|
7.5.2 Establishing an Arbitrary PSD or Autocorrelation Function |
|
|
278 | (4) |
|
7.6 Establishing a pdf and a PSD |
|
|
282 | (1) |
|
7.7 PN Sequence Generators |
|
|
283 | (7) |
|
|
290 | (3) |
|
|
291 | (1) |
|
7.8.2 Input/Output Cross-Correlation |
|
|
291 | (1) |
|
7.8.3 Output Autocorrelation Function |
|
|
292 | (1) |
|
7.8.4 Input/Output Variances |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (4) |
|
7.13 Appendix A: MATLAB Code for Example 7.11 |
|
|
299 | (1) |
|
7.14 Main Program: c7_Jakes.m |
|
|
299 | (4) |
|
7.14.1 Supporting Routines |
|
|
300 | (3) |
|
|
303 | (44) |
|
8.1 Basic Graphical Techniques |
|
|
304 | (5) |
|
8.1.1 A System Example-π/4 DQPSK Transmission |
|
|
304 | (3) |
|
8.1.2 Waveforms, Eye Diagrams, and Scatter Plots |
|
|
307 | (2) |
|
|
309 | (20) |
|
|
309 | (7) |
|
8.2.2 Power Spectral Density Estimation |
|
|
316 | (7) |
|
8.2.3 Gain, Delay, and Signal-to-Noise Ratios |
|
|
323 | (6) |
|
|
329 | (7) |
|
8.3.1 Analytic Approach to Block Coding |
|
|
330 | (3) |
|
8.3.2 Analytic Approach to Convolutional Coding |
|
|
333 | (3) |
|
|
336 | (1) |
|
|
336 | (2) |
|
|
338 | (1) |
|
|
339 | (3) |
|
8.8 Appendix A: MATLAB Code for Example 8.1 |
|
|
342 | (5) |
|
8.8.1 Main Program: c8_pi4demo.m |
|
|
342 | (2) |
|
8.8.2 Supporting Routines |
|
|
344 | (3) |
|
9 INTRODUCTION TO MONTE CARLO METHODS |
|
|
347 | (32) |
|
|
347 | (7) |
|
|
348 | (1) |
|
9.1.2 Unbiased and Consistent Estimators |
|
|
349 | (1) |
|
9.1.3 Monte Carlo Estimation |
|
|
349 | (2) |
|
9.1.4 The Estimation of π |
|
|
351 | (3) |
|
9.2 Application to Communications Systems The AWGN Channel |
|
|
354 | (12) |
|
9.2.1 The Binomial Distribution |
|
|
355 | (4) |
|
9.2.2 Two Simple Monte Carlo Simulations |
|
|
359 | (7) |
|
9.3 Monte Carlo Integration |
|
|
366 | (9) |
|
|
368 | (2) |
|
|
370 | (1) |
|
9.3.3 Confidence Intervals |
|
|
371 | (4) |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
376 | (3) |
|
10 MONTE CARLO SIMULATION OF COMMUNICATION SYSTEMS |
|
|
379 | (42) |
|
10.1 Two Monte Carlo Examples |
|
|
380 | (13) |
|
10.2 Semianalytic Techniques |
|
|
393 | (12) |
|
10.2.1 Basic Considerations |
|
|
394 | (3) |
|
10.2.2 Equivalent Noise sources |
|
|
397 | (1) |
|
10.2.3 Semianalytic BER Estimation for PSK |
|
|
398 | (2) |
|
10.2.4 Semianalytic BER Estimation for QPSK |
|
|
400 | (4) |
|
10.2.5 Choice of Data Sequence |
|
|
404 | (1) |
|
|
405 | (1) |
|
|
406 | (1) |
|
|
406 | (2) |
|
10.6 Appendix A: Simulation Code for Example 10.1 |
|
|
408 | (2) |
|
|
408 | (1) |
|
10.6.2 Supporting Program: random_binary.m |
|
|
409 | (1) |
|
10.7 Appendix B: Simulation Code for Example 10.2 |
|
|
410 | (5) |
|
|
410 | (4) |
|
10.7.2 Supporting Programs |
|
|
414 | (1) |
|
|
414 | (1) |
|
10.8 Appendix C: Simulation Code for Example 10.3 |
|
|
415 | (3) |
|
10.8.1 Main Program: c10_SKSA.m |
|
|
415 | (1) |
|
10.8.2 Supporting Programs |
|
|
416 | (2) |
|
10.9 Appendix D: Simulation Code for Example 10.4 |
|
|
418 | (3) |
|
10.9.1 Supporting Programs |
|
|
419 | (2) |
|
11 METHODOLOGY FOR SIMULATING A WIRELESS SYSTEM |
|
|
421 | (26) |
|
11.1 System-Level Simplifications and Sampling Rate Considerations |
|
|
423 | (1) |
|
|
424 | (19) |
|
11.2.1 Methodology for Simulation of the Analog Portion of the System |
|
|
429 | (12) |
|
11.2.2 Summary of Methodology for Simulating the Analog Portion of the System |
|
|
441 | (1) |
|
11.2.3 Estimation of the Coded BER |
|
|
441 | (1) |
|
11.2.4 Estimation of Voice-Quality Metric |
|
|
441 | (1) |
|
11.2.5 Summary of Overall Methodology |
|
|
442 | (1) |
|
|
443 | (1) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
444 | (3) |
Part III Advanced Models and Simulation Techniques |
|
447 | (320) |
|
12 MODELING AND SIMULATION OF NONLINEARITIES |
|
|
447 | (50) |
|
|
448 | (3) |
|
12.1.1 Types of Nonlinearities and Models |
|
|
448 | (1) |
|
12.1.2 Simulation of Nonlinearities-Factors to Consider |
|
|
449 | (2) |
|
12.2 Modeling and Simulation of Memoryless Nonlinearities |
|
|
451 | (17) |
|
12.2.1 Baseband Nonlinearities |
|
|
452 | (1) |
|
12.2.2 Bandpass Nonlinearities-Zonal Bandpass Model |
|
|
453 | (2) |
|
12.2.3 Lowpass Complex Envelope (AM-to-AM and AM-to-PM) Models |
|
|
455 | (6) |
|
12.2.4 Simulation of Complex Envelope Models |
|
|
461 | (1) |
|
12.2.5 The Multicarrier Case |
|
|
462 | (6) |
|
12.3 Modeling and Simulation of Nonlinearities with Memory |
|
|
468 | (7) |
|
12.3.1 Empirical Models Based on swept Tone Measurements |
|
|
470 | (2) |
|
|
472 | (3) |
|
12.4 Techniques for Solving Nonlinear Differential Equations |
|
|
475 | (11) |
|
12.4.1 State Vector Form of the NLDE |
|
|
476 | (3) |
|
12.4.2 Recursive Solutions of NLDE-Scalar Case |
|
|
479 | (4) |
|
12.4.3 General Form of Multistep Methods |
|
|
483 | (1) |
|
12.4.4 Accuracy and Stability of Numerical Integration Methods |
|
|
483 | (2) |
|
12.4.5 Solution of Higher-Order NLDE-Vector Case |
|
|
485 | (1) |
|
|
486 | (2) |
|
12.5.1 Integration Methods |
|
|
486 | (2) |
|
|
488 | (1) |
|
|
488 | (1) |
|
|
489 | (1) |
|
|
490 | (3) |
|
12.10 Appendix A: Saleh's Model |
|
|
493 | (1) |
|
12.11 Appendix B: MATLAB Code for Example 12.2 |
|
|
494 | (3) |
|
12.11.1 Supporting Routines |
|
|
495 | (2) |
|
13 MODELING AND SIMULATION OF TIME-VARYING SYSTEMS |
|
|
497 | (32) |
|
|
497 | (3) |
|
13.1.1 Examples of Time-Varying Systems |
|
|
498 | (1) |
|
13.1.2 Modeling and Simulation Approach |
|
|
499 | (1) |
|
13.2 Models for LTV Systems |
|
|
500 | (11) |
|
13.2.1 Time-Domain Description for LTV System |
|
|
500 | (3) |
|
13.2.2 Frequency Domain Description of LTV Systems |
|
|
503 | (2) |
|
13.2.3 Properties of LTV Systems |
|
|
505 | (6) |
|
13.3 Random Process Models |
|
|
511 | (4) |
|
13.4 Simulation Models for LTV Systems |
|
|
515 | (3) |
|
13.4.1 Tapped Delay Line Model |
|
|
515 | (3) |
|
|
518 | (4) |
|
|
518 | (2) |
|
|
520 | (2) |
|
|
522 | (1) |
|
|
523 | (1) |
|
|
523 | (1) |
|
|
523 | (2) |
|
13.10 Appendix A: Code for MATLAB Example 1 |
|
|
525 | (2) |
|
13.10.1 Supporting Program |
|
|
526 | (1) |
|
13.11 Appendix B: Code for MATLAB Example 2 |
|
|
527 | (2) |
|
13.11.1 Supporting Routines |
|
|
528 | (1) |
|
|
528 | (1) |
|
14 MODELING AND SIMULATION OF WAVEFORM CHANNELS |
|
|
529 | (54) |
|
|
529 | (4) |
|
14.1.1 Models of Communication Channels |
|
|
530 | (1) |
|
14.1.2 Simulation of Communication Channels |
|
|
531 | (1) |
|
14.1.3 Discrete Channel Models |
|
|
532 | (1) |
|
14.1.4 Methodology for Simulating Communication System Performance |
|
|
532 | (1) |
|
14.1.5 Outline of Chapter |
|
|
533 | (1) |
|
14.2 Wired and Guided Wave Channels |
|
|
533 | (1) |
|
|
534 | (4) |
|
14.3.1 Tropospheric Channel |
|
|
536 | (1) |
|
14.3.2 Rain Effects on Radio Channels |
|
|
537 | (1) |
|
14.4 Multipath Fading Channels |
|
|
538 | (8) |
|
|
538 | (1) |
|
14.4.2 Example of a Multipath Fading Channel |
|
|
538 | (7) |
|
14.4.3 Discrete Versus Diffused Multipath |
|
|
545 | (1) |
|
14.5 Modeling Multipath Fading Channels |
|
|
546 | (1) |
|
14.6 Random Process Models |
|
|
547 | (5) |
|
14.6.1 Models for Temporal Variations in the Channel Response (Fading) |
|
|
549 | (1) |
|
14.6.2 Important Parameters |
|
|
550 | (2) |
|
14.7 Simulation Methodology |
|
|
552 | (19) |
|
14.7.1 Simulation of Diffused Multipath Fading Channels |
|
|
553 | (5) |
|
14.7.2 Simulation of Discrete Multipath Fading Channels |
|
|
558 | (7) |
|
14.7.3 Examples of Discrete Multipath Fading Channel Models |
|
|
565 | (6) |
|
14.7.4 Models for Indoor Wireless Channels |
|
|
571 | (1) |
|
|
571 | (1) |
|
|
572 | (1) |
|
|
572 | (3) |
|
|
575 | (2) |
|
14.12 Appendix A: MATLAB Code for Example 14.1 |
|
|
577 | (3) |
|
|
577 | (1) |
|
14.12.2 Supporting Functions |
|
|
578 | (2) |
|
14.13 Appendix B: MATLAB Code for Example 14.2 |
|
|
580 | (3) |
|
|
580 | (1) |
|
14.13.2 Supporting Functions |
|
|
581 | (2) |
|
15 DISCRETE CHANNEL MODELS |
|
|
583 | (56) |
|
|
584 | (2) |
|
15.2 Discrete Memoryless Channel Models |
|
|
586 | (3) |
|
15.3 Markov Models for Discrete Channels with Memory |
|
|
589 | (12) |
|
|
589 | (7) |
|
15.3.2 N-state Markov Model |
|
|
596 | (1) |
|
15.3.3 First-Order Markov Process |
|
|
597 | (1) |
|
|
597 | (1) |
|
15.3.5 Simulation of the Markov Model |
|
|
598 | (3) |
|
15.4 Example HMMs-Gilbert and Fritchman Models |
|
|
601 | (3) |
|
15.5 Estimation of Markov Model Parameters |
|
|
604 | (11) |
|
|
611 | (1) |
|
15.5.2 Convergence and Stopping Criteria |
|
|
612 | (1) |
|
15.5.3 Block Equivalent Markov Models |
|
|
613 | (2) |
|
|
615 | (6) |
|
|
621 | (1) |
|
|
622 | (1) |
|
|
622 | (1) |
|
|
623 | (4) |
|
15.11 Appendix A: Error Vector Generation |
|
|
627 | (2) |
|
15.11.1 Program: c15_errvector.m |
|
|
627 | (1) |
|
15.11.2 Program: c15 hmmtest.m |
|
|
628 | (1) |
|
15.12 Appendix B: The Baum-Welch Algorithm |
|
|
629 | (3) |
|
15.13 Appendix C: The Semi-Hidden Markov Model |
|
|
632 | (4) |
|
15.14 Appendix D: Run-Length Code Generation |
|
|
636 | (1) |
|
15.15 Appendix E: Determination of Error-Free Distribution |
|
|
637 | (2) |
|
|
637 | (1) |
|
|
637 | (2) |
|
16 EFFICIENT SIMULATION TECHNIQUES |
|
|
639 | (32) |
|
|
640 | (2) |
|
|
642 | (3) |
|
|
645 | (15) |
|
16.3.1 Area of an Ellipse |
|
|
646 | (9) |
|
16.3.2 Sensitivity to the pdf |
|
|
655 | (1) |
|
|
656 | (1) |
|
16.3.4 The Communication Problem |
|
|
657 | (2) |
|
16.3.5 Conventional and Improved Importance Sampling |
|
|
659 | (1) |
|
|
660 | (1) |
|
|
660 | (2) |
|
|
662 | (1) |
|
|
662 | (3) |
|
16.8 Appendix A: MATLAB Code for Example 16.3 |
|
|
665 | (6) |
|
16.8.1 Supporting Routines |
|
|
669 | (2) |
|
17 CASE STUDY: SIMULATION OF A CELLULAR RADIO SYSTEM |
|
|
671 | (48) |
|
|
671 | (2) |
|
17.2 Cellular Radio System |
|
|
673 | (15) |
|
17.2.1 System-Level Description |
|
|
673 | (3) |
|
17.2.2 Modeling a Cellular Communication System |
|
|
676 | (12) |
|
17.3 Simulation Methodology |
|
|
688 | (18) |
|
|
688 | (12) |
|
17.3.2 Processing the Simulation Results |
|
|
700 | (6) |
|
|
706 | (1) |
|
|
706 | (1) |
|
|
707 | (1) |
|
|
708 | (2) |
|
17.8 Appendix A: Program for Generating the Erlang B Chart |
|
|
710 | (2) |
|
17.9 Appendix B: Initialization Code for Simulation |
|
|
712 | (2) |
|
17.10 Appendix C: Modeling Co-Channel Interference |
|
|
714 | (4) |
|
17.10.1 Wilkinson's Method |
|
|
715 | (2) |
|
17.10.2 Schwartz and Yeh's Method |
|
|
717 | (1) |
|
17.11 Appendix D: MATLAB Code for Wilkinson's Method |
|
|
718 | (1) |
|
18 TWO EXAMPLE SIMULATIONS |
|
|
719 | (48) |
|
18.1 A Code-Division Multiple Access system |
|
|
720 | (14) |
|
|
720 | (4) |
|
18.1.2 The Simulation Program |
|
|
724 | (2) |
|
18.1.3 Example Simulations |
|
|
726 | (3) |
|
18.1.4 Development of Markov Models |
|
|
729 | (5) |
|
18.2 FDM System with a Nonlinear Satellite Transponder |
|
|
734 | (12) |
|
18.2.1 System Description and Simulation Objectives |
|
|
734 | (3) |
|
18.2.2 The Overall Simulation Model |
|
|
737 | (1) |
|
18.2.3 Uplink FDM Signal Generation |
|
|
738 | (2) |
|
18.2.4 Satellite Transponder Model |
|
|
740 | (1) |
|
18.2.5 Receiver Model and Semianalytic BER Estimator |
|
|
741 | (1) |
|
18.2.6 Simulation Results |
|
|
742 | (2) |
|
18.2.7 Summary and Conclusions |
|
|
744 | (2) |
|
|
746 | (1) |
|
18.4 Appendix A: MATLAB Code for CDMA Example |
|
|
747 | (6) |
|
18.4.1 Supporting Functions |
|
|
750 | (3) |
|
18.5 Appendix B: Preprocessors for CDMA Application |
|
|
753 | (2) |
|
|
753 | (1) |
|
18.5.2 Study Illustrating the Effect of the Ricean K-Factor |
|
|
753 | (2) |
|
18.6 Appendix C: MATLAB Function c18_errvector.m |
|
|
755 | (1) |
|
18.7 Appendix D: MATLAB Code for Satellite FDM Example |
|
|
756 | (11) |
|
18.7.1 Supporting Functions |
|
|
760 | (7) |
INDEX |
|
767 | (8) |
ABOUT THE AUTHORS |
|
775 | |