|
|
1 | (28) |
|
|
1 | (1) |
|
Distance sampling methods |
|
|
1 | (9) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (3) |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (3) |
|
|
11 | (1) |
|
Method of transect coverage |
|
|
12 | (1) |
|
|
12 | (2) |
|
|
14 | (3) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
17 | (1) |
|
Known constants and parameters |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (3) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (4) |
|
|
23 | (4) |
|
|
27 | (1) |
|
|
27 | (2) |
|
Assumptions and modelling philosphy |
|
|
29 | (22) |
|
|
29 | (8) |
|
Assumption 1: objects on the line or point are detected with certainty |
|
|
30 | (1) |
|
Assumption 2: Objects are detected at their initial location |
|
|
31 | (3) |
|
Assumption 3: measurements are exact |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
37 | (4) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
42 | (3) |
|
|
45 | (1) |
|
|
45 | (3) |
|
|
48 | (3) |
|
|
48 | (1) |
|
|
49 | (1) |
|
Final analysis and inference |
|
|
50 | (1) |
|
|
51 | (51) |
|
|
51 | (7) |
|
Standard distance sampling |
|
|
51 | (1) |
|
|
52 | (2) |
|
|
54 | (3) |
|
Distance sampling with multipliers |
|
|
57 | (1) |
|
The Key function formulation for distance data |
|
|
58 | (3) |
|
|
61 | (7) |
|
|
61 | (1) |
|
|
62 | (2) |
|
|
64 | (1) |
|
The half-normal detection function |
|
|
65 | (2) |
|
Constrained maximum likehood estimation |
|
|
67 | (1) |
|
|
68 | (3) |
|
Criteria for robust estimation |
|
|
68 | (1) |
|
Akaike's Information Criterion |
|
|
69 | (1) |
|
The likelihood ratio test |
|
|
70 | (1) |
|
|
71 | (1) |
|
Estimation for clustered populations |
|
|
71 | (5) |
|
|
72 | (1) |
|
Stratification by cluster size |
|
|
72 | (1) |
|
Weighted average of cluster sizes |
|
|
73 | (1) |
|
|
73 | (2) |
|
|
75 | (1) |
|
Replacing clusters by individual objects |
|
|
75 | (1) |
|
Density, variance and interval estimation |
|
|
76 | (12) |
|
|
76 | (2) |
|
Replicate lines or points |
|
|
78 | (2) |
|
|
80 | (2) |
|
|
82 | (2) |
|
Estimating change in density |
|
|
84 | (2) |
|
A finite population correction factor |
|
|
86 | (2) |
|
Stratification and covariates |
|
|
88 | (4) |
|
|
89 | (2) |
|
|
91 | (1) |
|
Efficient simulation of distance data |
|
|
92 | (7) |
|
|
92 | (3) |
|
The simulated line transect data of Chapter 4 |
|
|
95 | (2) |
|
The Simulated size-biased point transect data of Chapter 5 |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
99 | (3) |
|
|
102 | (44) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (5) |
|
|
103 | (5) |
|
|
108 | (1) |
|
Estimating the variance in sample size |
|
|
108 | (1) |
|
Analysis of grouped or ungrouped data |
|
|
109 | (1) |
|
|
110 | (4) |
|
|
110 | (1) |
|
Akaike's Information Criterion |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (1) |
|
Estimation of density and measures of precision |
|
|
114 | (5) |
|
|
114 | (2) |
|
Ignoring information from replicate lines |
|
|
116 | (1) |
|
Bootstrap variances and Confidence intervals |
|
|
117 | (1) |
|
Satterthwaite degrees of freedom for confidence intervals |
|
|
118 | (1) |
|
Estimation when the objects are in clusters |
|
|
119 | (11) |
|
Observed cluster size independent of distance |
|
|
119 | (3) |
|
Observed cluster size dependent on distance |
|
|
122 | (8) |
|
|
130 | (3) |
|
|
130 | (1) |
|
|
131 | (1) |
|
Movement prior to detection |
|
|
131 | (1) |
|
Inaccuracy in distance measurements |
|
|
132 | (1) |
|
|
133 | (3) |
|
|
136 | (10) |
|
|
146 | (36) |
|
|
146 | (1) |
|
|
147 | (4) |
|
|
151 | (3) |
|
|
151 | (2) |
|
|
153 | (1) |
|
Estimating the variance in sample size |
|
|
154 | (1) |
|
Analysis of grouped or ungrouped data |
|
|
155 | (1) |
|
|
155 | (4) |
|
|
155 | (1) |
|
Akaike's Information Criterion |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
Estimation of density and measures of precision |
|
|
159 | (5) |
|
|
159 | (2) |
|
Bootstrap variances and Confidence intervals |
|
|
161 | (3) |
|
Estimation when the objects are in clusters |
|
|
164 | (7) |
|
Standard method with additional truncation |
|
|
167 | (1) |
|
Replacement of clusters by individuals |
|
|
167 | (3) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (5) |
|
|
176 | (2) |
|
|
178 | (4) |
|
|
182 | (46) |
|
|
182 | (1) |
|
|
183 | (6) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (3) |
|
|
187 | (2) |
|
Line transect surveys for objects that are not continuously available for detection |
|
|
189 | (2) |
|
Periods of detectability interspersed with Periods of unavailability |
|
|
189 | (1) |
|
Objects that gives discreate cues |
|
|
190 | (1) |
|
|
191 | (7) |
|
|
191 | (1) |
|
|
192 | (2) |
|
|
194 | (2) |
|
|
196 | (2) |
|
Distance sampling surveys for fast-moving objects |
|
|
198 | (6) |
|
|
198 | (5) |
|
|
203 | (1) |
|
|
204 | (10) |
|
|
204 | (4) |
|
Estimators based on the empirical cdf |
|
|
208 | (2) |
|
Estimators based on shape restrictions |
|
|
210 | (1) |
|
|
211 | (3) |
|
|
214 | (1) |
|
Distance sampling surveys when the observed area is incompletely covered |
|
|
214 | (2) |
|
|
216 | (7) |
|
Survey desing and field methods |
|
|
217 | (2) |
|
|
219 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
Point-to-object and nearest neighbour methods |
|
|
223 | (2) |
|
|
225 | (3) |
|
Studying design and field methods |
|
|
228 | (1) |
|
|
228 | (2) |
|
|
230 | (2) |
|
|
232 | (8) |
|
|
240 | (9) |
|
Survey protocol and searching behaviour |
|
|
249 | (2) |
|
|
251 | (2) |
|
|
253 | (1) |
|
Data measurement and recording |
|
|
254 | (1) |
|
|
254 | (9) |
|
|
263 | (1) |
|
Distance measurement error |
|
|
264 | (8) |
|
|
272 | (1) |
|
|
273 | (2) |
|
|
275 | (1) |
|
|
275 | (4) |
|
|
279 | (1) |
|
|
280 | (1) |
|
Aircraft and survey characteristics |
|
|
281 | |