Classical Geometry Euclidean, Transformational, Inversive, and Projective

by ; ; ;
Edition: 1st
Format: Hardcover
Pub. Date: 2014-04-14
Publisher(s): Wiley
List Price: $118.34

Buy New

Usually Ships in 8 - 10 Business Days.
$118.22

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$109.20
$109.20

Used Textbook

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Written by well-known mathematical problem solvers, Modern Geometry features up-to-date and applicable coverage of the wide spectrum of modern geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features: self-contained coverage of modern geometry, provides a large selection of solved exercises to aid in reader comprehension, contains material that can be tailored for a one-, two-, or three-semester sequence, and provides a wide range of fully worked exercises throughout.

Author Biography

I. E. LEONARD, PHD, is Lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta, Canada. The author of over fifteen journal articles, his areas of research interest include real analysis and discrete mathematics.

J. E. LEWIS, PHD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta, Canada. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004.

A. C. F. LIU, PHD, is Professor in the Department of Mathematical and Statistical Sciences at the University of Alberta, Canada. He has authored over thirty journal articles.

G. W. TOKARSKY, MSC, is Faculty Lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta, Canada. His areas of research interest include polygonal billiards and symbolic logic.

Table of Contents

Preface v

PART I EUCLIDEAN GEOMETRY

1 Congruency 3

1.1 Introduction 3

1.2 Congruent Figures 6

1.3 Parallel Lines 12

1.3.1 Angles in a Triangle 13

1.3.2 Thales' Theorem 14

1.3.3 Quadrilaterals 17

1.4 More About Congruency 21

1.5 Perpendiculars and Angle Bisectors 24

1.6 Construction Problems 28

1.6.1 The Method of Loci 31

1.7 Solutions to Selected Exercises 33

1.8 Problems 38

2 Concurrency 41

2.1 Perpendicular Bisectors 41

2.2 Angle Bisectors 43

2.3 Altitudes 46

2.4 Medians 48

2.5 Construction Problems 50

2.6 Solutions to the Exercises 54

2.7 Problems 56

3 Similarity 59

3.1 Similar Triangles 59

3.2 Parallel Lines and Similarity 60

3.3 Other Conditions Implying Similarity 64

3.4 Examples 67

3.5 Construction Problems 75

3.6 The Power of a Point 82

3.7 Solutions to the Exercises 87

3.8 Problems 90

4 Theorems of Ceva and Menelaus 95

4.1 Directed Distances, Directed Ratios 95

4.2 The Theorems 97

4.3 Applications of Ceva's Theorem 99

4.4 Applications of Menelaus' Theorem 103

4.5 Proofs of the Theorems 115

4.6 Extended Versions of the Theorems 125

4.6.1 Ceva's Theorem in the Extended Plane 127

4.6.2 Menelaus' Theorem in the Extended Plane 129

4.7 Problems 131

5 Area 133

5.1 Basic Properties 133

5.1.1 Areas of Polygons 134

5.1.2 Finding the Area of Polygons 138

5.1.3 Areas of Other Shapes 139

5.2 Applications of the Basic Properties 140

5.3 Other Formulae for the Area of a Triangle 147

5.4 Solutions to the Exercises 153

5.5 Problems 153

6 Miscellaneous Topics 159

6.1 The Three Problems of Antiquity 159

6.2 Constructing Segments of Speci_c Lengths 161

6.3 Construction of Regular Polygons 166

6.3.1 Construction of the Regular Pentagon 168

6.3.2 Construction of Other Regular Polygons 169

6.4 Miquel's Theorem 171

6.5 Morley's Theorem 178

6.6 The Nine­Point Circle 185

6.6.1 Special Cases 188

6.7 The Steiner­Lehmus Theorem 193

6.8 The Circle of Apollonius 197

6.9 Solutions to the Exercises 200

6.10 Problems 201

PART II TRANSFORMATIONAL GEOMETRY

7 The Euclidean Transformations or Isometries 207

7.1 Rotations, Re_ections, and Translations 207

7.2 Mappings and Transformations 211

7.2.1 Isometries 213

7.3 Using Rotations, Re_ections, and Translations 217

7.4 Problems 227

8 The Algebra of Isometries 231

8.1 Basic Algebraic Properties 231

8.2 Groups of Isometries 236

8.2.1 Direct and Opposite Isometries 237

8.3 The Product of Re_ections 241

8.4 Problems 246

9 The Product of Direct Isometries 253

9.1 Angles 253

9.2 Fixed Points 255

9.3 The Product of Two Translations 256

9.4 The Product of a Translation and a Rotation 257

9.5 The Product of Two Rotations 260

9.6 Problems 263

10 Symmetry and Groups 269

10.1 More About Groups 269

10.1.1 Cyclic and Dihedral Groups 273

10.2 Leonardo's Theorem 277

10.3 Problems 281

11 Homotheties 287

11.1 The Pantograph 287

11.2 Some Basic Properties 288

11.2.1 Circles 291

11.3 Construction Problems 293

11.4 Using Homotheties in Proofs 298

11.5 Dilatation 302

11.6 Problems 304

12 Tessellations 311

12.1 Tilings 311

12.2 Monohedral Tilings 312

12.3 Tiling with Regular Polygons 317

12.4 Platonic and Archimedean Tilings 323

12.5 Problems 330

PART III INVERSIVE AND PROJECTIVE GEOMETRIES

13 Introduction to Inversive Geometry 337

13.1 Inversion in the Euclidean Plane 337

13.2 The Effect of Inversion on Euclidean Properties 343

13.3 Orthogonal Circles 351

13.4 Compass­Only Constructions 360

13.5 Problems 369

14 Reciprocation and the Extended Plane 373

14.1 Harmonic Conjugates 373

14.2 The Projective Plane and Reciprocation 383

14.3 Conjugate Points and Lines 393

14.4 Conics 399

14.5 Problems 406

15 Cross Ratios 409

15.1 Cross Ratios 409

15.2 Applications of Cross Ratios 420

15.3 Problems 429

16 Introduction to Projective Geometry 433

16.1 Straightedge Constructions 433

16.2 Perspectivities and Projectivities 443

16.3 Line Perspectivities and Line Projectivities 448

16.4 Projective Geometry and Fixed Points 448

16.5 Projecting a Line to In_nity 451

16.6 The Apollonian Definition of a Conic 455

16.7 Problems 461

Bibliography 464

Index 469

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.