|
|
1 | (54) |
|
|
2 | (7) |
|
|
9 | (8) |
|
|
17 | (6) |
|
|
23 | (6) |
|
|
29 | (8) |
|
Powers, Polynomials, and Rational Functions |
|
|
37 | (8) |
|
Introduction to Continuity |
|
|
45 | (10) |
|
|
48 | (4) |
|
|
52 | (2) |
|
|
54 | (1) |
|
Key Concept: The Derivative |
|
|
55 | (50) |
|
|
56 | (6) |
|
|
62 | (8) |
|
The Derivative at a Point |
|
|
70 | (8) |
|
|
78 | (7) |
|
Interpretations of the Derivative |
|
|
85 | (4) |
|
|
89 | (6) |
|
Continuity and Differentiability |
|
|
95 | (10) |
|
|
99 | (4) |
|
|
103 | (1) |
|
|
104 | (1) |
|
Short-Cuts to Differentiation |
|
|
105 | (60) |
|
|
106 | (7) |
|
|
113 | (5) |
|
The Product and Quotient Rules |
|
|
118 | (5) |
|
|
123 | (5) |
|
The Trigonometric Functions |
|
|
128 | (5) |
|
Applications of the Chain Rule |
|
|
133 | (5) |
|
|
138 | (3) |
|
|
141 | (9) |
|
Linear Approximation and the Derivative |
|
|
150 | (4) |
|
Using Local Linearity to Find Limits |
|
|
154 | (11) |
|
|
159 | (3) |
|
|
162 | (1) |
|
|
163 | (2) |
|
|
165 | (56) |
|
Using First and Second Derivatives |
|
|
166 | (10) |
|
|
176 | (4) |
|
|
180 | (9) |
|
Applications to Marginality |
|
|
189 | (7) |
|
Optimization and Modeling |
|
|
196 | (7) |
|
|
203 | (4) |
|
Theorems About Continuous and Differentiable Functions |
|
|
207 | (14) |
|
|
212 | (4) |
|
|
216 | (1) |
|
|
217 | (4) |
|
Key Concept: The Definite Integral |
|
|
221 | (40) |
|
How Do We Measure Distance Traveled? |
|
|
222 | (7) |
|
|
229 | (7) |
|
Interpretations of the Definite Integral |
|
|
236 | (8) |
|
Theorems About Definite Integrals |
|
|
244 | (17) |
|
|
252 | (5) |
|
|
257 | (1) |
|
|
258 | (3) |
|
Constructing Antiderivatives |
|
|
261 | (28) |
|
Antiderivatives Graphically and Numerically |
|
|
262 | (6) |
|
Constructing Antiderivatives Analytically |
|
|
268 | (5) |
|
|
273 | (5) |
|
Second Fundamental Theorem of Calculus |
|
|
278 | (4) |
|
|
282 | (7) |
|
|
284 | (3) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (56) |
|
Integration by Substitution |
|
|
290 | (8) |
|
|
298 | (6) |
|
|
304 | (5) |
|
Algebraic Identities and Trigonometric Substitutions |
|
|
309 | (8) |
|
Approximating Definite Integrals |
|
|
317 | (5) |
|
Approximation Errors and Simpson's Rule |
|
|
322 | (4) |
|
|
326 | (8) |
|
Comparison of Improper Integrals |
|
|
334 | (11) |
|
|
338 | (4) |
|
|
342 | (1) |
|
|
343 | (2) |
|
Using the Definite Integral |
|
|
345 | (60) |
|
|
346 | (6) |
|
|
352 | (8) |
|
Density and Center of Mass |
|
|
360 | (8) |
|
|
368 | (9) |
|
Applications to Economics |
|
|
377 | (6) |
|
|
383 | (7) |
|
Probability, Mean, and Median |
|
|
390 | (15) |
|
|
397 | (4) |
|
|
401 | (1) |
|
|
402 | (3) |
|
|
405 | (28) |
|
|
406 | (6) |
|
Convergence of Sequences and Series |
|
|
412 | (5) |
|
|
417 | (6) |
|
|
423 | (10) |
|
|
429 | (2) |
|
|
431 | (1) |
|
|
431 | (2) |
|
|
433 | (44) |
|
|
434 | (7) |
|
|
441 | (5) |
|
Finding and Using Taylor Series |
|
|
446 | (7) |
|
The Error in Taylor Polynomial Approximations |
|
|
453 | (4) |
|
|
457 | (20) |
|
|
470 | (3) |
|
|
473 | (1) |
|
|
474 | (3) |
|
|
477 | (82) |
|
What is a Differential Equation? |
|
|
478 | (4) |
|
|
482 | (6) |
|
|
488 | (4) |
|
|
492 | (5) |
|
|
497 | (9) |
|
Applications and Modeling |
|
|
506 | (8) |
|
Models of Population Growth |
|
|
514 | (9) |
|
Systems of Differential Equations |
|
|
523 | (9) |
|
Analyzing the Phase Plane |
|
|
532 | (5) |
|
Second-Order Differential Equations: Oscillations |
|
|
537 | (7) |
|
Linear Second-Order Differential Equations |
|
|
544 | (15) |
|
|
552 | (3) |
|
|
555 | (1) |
|
|
556 | (3) |
APPENDIX |
|
559 | (22) |
|
A Roots, Accuracy, and Bounds |
|
|
560 | (8) |
|
|
568 | (2) |
|
|
570 | (7) |
|
|
577 | (4) |
Ready Reference |
|
581 | (17) |
Answers to Odd Numbered Problems |
|
598 | (17) |
Index |
|
615 | |